section 4: End-to-End Deployment of an AI Model Using Docker, Azure, and Streamlit


4.1 Designing the AI Solution

  • Overview of the AI Model Pipeline
    • The pipeline for deploying an AI model typically includes stages like data ingestion, preprocessing, model inference, and visualization. In this section, we’ll walk through deploying an image classification model as a web application using Docker, Azure, and Streamlit.
    • Pipeline Steps:
      • Input Handling: The app will allow users to upload an image.
      • Data Preprocessing: Image resizing and scaling for compatibility with the model.
      • Model Inference: Running the model to get predictions.
      • Output Visualization: Displaying the prediction results in a user-friendly interface.
  • High-Level Architecture
    • The solution’s architecture includes the following components:
      • Streamlit Front-End: The user-facing interface, where users upload images and see predictions.
      • Dockerized Application: Encapsulates the model and application code in a Docker container for consistency across environments.
      • Azure Cloud Platform: Hosts the Dockerized application, making it accessible as a web service.

4.2 Preparing the Docker Container

  • Writing the Dockerfile
    • The Dockerfile serves as the blueprint for creating a container that includes all dependencies for running the Streamlit application and model.
    • Sample Dockerfile for an AI application:
      # Start with a base Python image
      FROM python:3.8
      
      # Set the working directory
      WORKDIR /app
      
      # Copy the current directory contents into the container
      COPY . /app
      
      # Install dependencies
      RUN pip install -r requirements.txt
      
      # Expose the port on which Streamlit will run
      EXPOSE 8501
      
      # Run the application
      CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
      
      • Explanation:
        • FROM python:3.8: Specifies the base image.
        • WORKDIR /app and COPY . /app: Sets the working directory and copies the local files.
        • RUN pip install -r requirements.txt: Installs required packages (e.g., Streamlit, TensorFlow, PyTorch).
        • EXPOSE 8501: Exposes the default Streamlit port.
        • CMD [...]: Runs the Streamlit app when the container starts.
  • Building the Docker Image
    • After defining the Dockerfile, build the Docker image:
      docker build -t ai-streamlit-app .
      
    • This command packages the code, dependencies, and environment into a Docker image named ai-streamlit-app.

4.3 Deploying the Docker Container on Azure

  • Azure Container Instances (ACI) for Simple Deployments
    • Push the Docker Image to Azure Container Registry (ACR):
      1. First, create a container registry in Azure.
        az acr create --resource-group myResourceGroup --name myContainerRegistry --sku Basic
        
      2. Log in to the registry and push the Docker image:
        az acr login --name myContainerRegistry
        docker tag ai-streamlit-app myContainerRegistry.azurecr.io/ai-streamlit-app
        docker push myContainerRegistry.azurecr.io/ai-streamlit-app
        
    • Deploy the Image to ACI:
      • Create a container instance in ACI:
        az container create \
          --resource-group myResourceGroup \
          --name aiAppInstance \
          --image myContainerRegistry.azurecr.io/ai-streamlit-app \
          --cpu 1 --memory 1 \
          --registry-login-server myContainerRegistry.azurecr.io \
          --registry-username <username> \
          --registry-password <password> \
          --dns-name-label ai-streamlit-app \
          --ports 8501
        
      • Accessing the Deployed App:
        • The deployed application is now accessible at http://ai-streamlit-app.region.azurecontainer.io:8501.
  • Azure Kubernetes Service (AKS) for Scalable Deployments
    • Why Use AKS?: AKS provides orchestration for managing multiple containers, load balancing, and scaling.
    • Deploying on AKS:
      • Create an AKS cluster and configure it to pull images from ACR, providing a more robust and scalable deployment option for production environments.

4.4 Building and Linking the Streamlit Front-End

  • Creating the Streamlit Application Code (app.py)
    • Below is a sample Streamlit application to handle image uploads, preprocess the images, and display model predictions.
      import streamlit as st
      from PIL import Image
      import tensorflow as tf
      
      # Load the model
      model = tf.keras.models.load_model("my_model.h5")
      
      # App title and instructions
      st.title("Image Classification App")
      st.write("Upload an image to classify.")
      
      # File uploader widget
      uploaded_file = st.file_uploader("Choose an image...", type="jpg")
      if uploaded_file is not None:
          image = Image.open(uploaded_file)
          st.image(image, caption="Uploaded Image", use_column_width=True)
      
          if st.button("Classify Image"):
              # Preprocess image
              image = image.resize((224, 224))
              image = tf.keras.preprocessing.image.img_to_array(image) / 255.0
              image = image.reshape((1, 224, 224, 3))
      
              # Predict
              predictions = model.predict(image)
              st.write(f"Predicted class: {predictions.argmax()}")
      
  • Testing the Application Locally
    • Run the Streamlit app locally using Docker:
      docker run -p 8501:8501 ai-streamlit-app
      
    • Access the app at http://localhost:8501 to verify functionality before deploying.

4.5 Monitoring, Scaling, and Updating the Model

  • Monitoring Model Performance with Azure Monitor
    • Azure Monitor collects logs and metrics for deployed applications, providing insights into model usage, prediction times, and errors.
    • Integrate Azure Monitor with ACI or AKS to capture logs from the container instances.
  • Scaling the Application
    • In AKS, configure the Horizontal Pod Autoscaler (HPA) to automatically scale the number of replicas based on CPU or memory utilization, ensuring high availability.
    • Example HPA configuration:
      apiVersion: autoscaling/v1
      kind: HorizontalPodAutoscaler
      metadata:
        name: ai-streamlit-app
      spec:
        maxReplicas: 10
        minReplicas: 1
        targetCPUUtilizationPercentage: 50
      
  • Updating the Model and Redeploying
    • Update the model, rebuild the Docker image, and push it to ACR. Use the following commands:
      docker build -t ai-streamlit-app .
      docker tag ai-streamlit-app myContainerRegistry.azurecr.io/ai-streamlit-app
      docker push myContainerRegistry.azurecr.io/ai-streamlit-app
      
    • Deploy the updated image in ACI or AKS to apply changes to the live application.

4.6 Implementing Continuous Integration/Continuous Deployment (CI/CD) with Azure DevOps

  • Setting Up Azure DevOps Pipelines
    • Azure DevOps allows automated building, testing, and deployment of Docker images.
    • Example YAML Pipeline:
      trigger:
        branches:
          include:
            - main
      
      pool:
        vmImage: 'ubuntu-latest'
      
      steps:
      - task: Docker@2
        inputs:
          containerRegistry: 'myContainerRegistry'
          repository: 'ai-streamlit-app'
          command: 'buildAndPush'
          tags: '$(Build.BuildId)'
      
      - task: AzureCLI@2
        inputs:
          azureSubscription: '<Your Subscription>'
          scriptType: 'bash'
          scriptLocation: 'inlineScript'
          inlineScript: |
            az container create --resource-group myResourceGroup --name aiAppInstance --image myContainerRegistry.azurecr.io/ai-streamlit-app:$(Build.BuildId) --cpu 1 --memory 1 --dns-name-label ai-streamlit-app --ports 8501
      
  • Automating Updates and Monitoring CI/CD Pipeline
    • Each code push triggers the pipeline to rebuild the Docker image, push it to ACR, and deploy the updated container.
    • This setup allows rapid iteration and updates, ensuring the deployed AI model remains current with minimal manual intervention.

4.7 Best Practices and Final Thoughts

  • Security and Access Control
    • Restrict access to ACR, ACI, and AKS resources by configuring role-based access control (RBAC).
    • Use Azure Key Vault for secure storage of sensitive data like API keys and database credentials.
  • Optimizing Costs and Resources
    • Monitor and analyze usage to optimize resource allocation and cost-effectiveness, especially when scaling up in AKS.
    • Enable auto-scaling